Wednesday, September 05, 2018

Mongolia: land of Priuses and coal





The headline is the answer to where we spent our summer vacation: two weeks in Mongolia, finishing with a week in South Korea.

Lots that could be said. Maybe the most blog-relevant though was the astounding number of Priuses (my favored plural form) we saw in the country, I'd guess they're almost half of the medium-sized and smaller cars on the road, virtually all of them second-hard cars from Japan with retrofitted frames to accept larger wheels for off-roading. Mongolia makes California look Prius-unfriendly.

By contrast to the Priuses, here's a view of air quality in the capital city:

This was in summertime a little over a week ago and our eyes stung within minutes; in winter the air quality is one of the worst in the world, for a city of 1.5 million people. Beijing had better air quality when we flew through there in transit. Most power (80%) comes from the pictured coal power plants. Even worse, the ger (yurt) districts ringing the capital are heated by individual coal stoves, or by wood and trash fuel.

We asked two elderly people in different parts of the country, a woman and a man, about what had changed the most in their lifetime, and both volunteered that it was the climate. Spring is always the dry and dusty season, but in the last 20 years it's been dryer for longer periods. Rains didn't start this year until July, and then came as floods. A country of pastoralists faces huge problems for climate.

With 3 million people, Mongolia doesn't contribute much to climate change, and it's on a good trend with the Priuses. I'd say most of the gers also sported PV solar panels like the one in the first pic; they've replaced generators for limited power needs.

Our guide says motorcycles have only recently replaced trucks as a way to herd animals around. One suggestion then would be the electric motorcycles now coming available could be used along with additional PV panels (and presumably an additional charging battery) to get the nomadic one-third or so of the country off the use of fossil fuels.

By contrast to the rural gers, the village buildings almost never had solar panels, so the fiscal incentives to hook up to coal-powered electricity must be heavily subsidized. I understand the need to do that in the capital, but in the villages it could be changed.

Our guide was shocked when I told him that in the US, wind power is cheaper than coal. He guessed that powerful people in government own the coal mines and have locked in the power contracts. It was windy every place we went to in southwest Mongolia, and there's more where that came from:


Mongolia's first priority has to be to fix air quality in the capital. The gers are picturesque but have to be replaced with housing connected to sewer and modern indoor heating. Soon they need to make use of this real wind power potential and limit coal. They should also just do everything possible to reduce incentives for people to move there, including decentralizing government functions.

Some other thoughts from the trip:

  • Mongolians prefer the term "Ulan Bataar" over "Ulan Bator" for their capital, and "Chingis Khan" over "Genghis Khan".
  • In a rare piece of good news, we saw lots of black-tailed gazelles, and our guide said there are a lot more of them due to new hunting regulations. Governmental rules in Mongolia are not just scraps of paper.
  • The over-simplified Mongolian viewpoint is that China was and remains a colonial oppressor, while Russia was the liberator (although they recognize some oppression there too). America has a good rep, maybe as a slight bit of counterbalance to the two giants on either side of Mongolia
  • AFAICT, Putin hasn't done anything potentially menacing in Mongolia like he has in many other former client states. Maybe there's no longstanding historical interest to move him, and Mongolia could theoretically rebalance towards China. It's interesting that Mongolia survives as a democratic country surrounded by dictatorships, albeit a somewhat corrupt dictatorship.
  • I'm somewhat - not completely but somewhat - cynical about indigenous peoples' cultural attachment to their environment resulting in better environmental protections, but it might actually make a difference in Mongolia. We'll see.
  • I have no big insights into South Korea, other than the sense that South Koreans (like Americans) don't have a great reputation as tourists, but they were incredibly nice to us visitors in their home country.

Tuesday, September 04, 2018

One of Life's Little Delingpole Lights or Nature Bites Last


James Delingpole is out there shaking the cup for himself, setting up a gofundme to pay for treatment for chronic lyme disease and a bad overbite.

Delingpole is a Brit, and the Brits have a National Health Service so why is Delingpole out there with the begging bowl.  Well, it turns out that the right wing climate change denying rags, and Delingpole is an a number one denier of climate change, don't pay so well, and the National Health Service won't.  Why, well chronic lyme is one of those things that you can start a bar fight about at a medical convention.  The quacks don't believe in it and the people who believe they are suffering from it don't believe the quacks.

Flimsin is not very understanding, perhaps understandably
but Eli is laughing his head off.  Why the bunnies ask, enjoyment at the discomfort of others is not becoming they say to Eli.  Well, some not Eli to be sure, might be enjoying Delingpole brought low, but Eli he knows some stuff.

Like lyme disease is carried by a tick.  If you have ever been walking through the north woods, you inspect yourself and your loved ones inch by inch for those buggers if they have dug in because of lyme. Done correctly that can be. . . enjoyable.  Lyme is getting a lot worse.  Indeed the EPA tracks the incidence of lyme. on  a page with the title "Climate Change Indicators: Lyme Disease".  Turns out that the ticks can't survive cold winters, and if the winters are warmer there are more ticks.

James Delingpole has been laid low by climate change.  Nature bites last

Saturday, September 01, 2018

Heat Has No Hair


Among physicists and chemists, well at least the theoretical side of the latter it is well known that electrons have no hair by which is meant that a bunny can't tell one electron from another.  This has serious consequences in quantum mechanics because in a multi-electron system you have to allow for each electron to be anywhere any electron is and it gets quite complicated.  True, when an atom is ionized you can trace the electron as it is expelled from the atom, but you can't say WHICH electron it was.  Same for electron capture.  You could identify an atom before it is captured, but once it was captured you can not identify it from any of the others in the atomic system.

The same thing is true of heat.  Heat in an object, perhaps better thermal energy, is random motion of atoms and molecules, translation, vibration, whatever.  You can say where heat entering an object came from (say radiation from the sun), but  if there is more than one source (trivial case).
once it is randomized and in the object you can't say where it came from.

Which brings Eli to the evergreen claim of those who deny the greenhouse effect, that radiation is not important compared to convection. 


We can summarize the data in the figure above adding that ~40 W/m2 go directly from the surface to space as IR radiation of the 398 W/m2 leaving the surface.  In and out in the table below means into and out the surface the atmosphere and space respectively.  In is taken as a positive addition to the heat content and negative a decrease. All numbers are fluxes in W/m2 


The total amount of thermal energy leaving the surface is ~502 W/m2 with 398 of them coming from radiation and 104 from a combination of evaporation and sensible heat.  Just in passing note that the variability in the latter is much higher when integrated over the globe.

In addition to 161 W/m2 from the sun absorbed at the surface the surface is warmed by 342 W/m2 of IR radiation from the atmosphere.  At this point a whole lot of people say, hmm, 104 W/m2 from sensible heat and evaporation, e.g. convection, is bigger than the net 398 - 342 = 56 W/m2 from radiation, so radiation is not such an important process in cooling the surface, more properly removing thermal energy from the surface.  A lot of the more, shall Eli say, sky dragonny, or numerically impaired go so far as to say radiation is not important, even though on their own terms it accounts for about a third of the heat leak.

However, that is not the important point.  The important point is to realize that surface IR radiation absorbed in the atmosphere is rapidly (10 μs) thermalized and converted into random motion of the molecules in the atmosphere, just as is latent heat from condensation of water vapor and from sensible heat.  Very little, less than a part per million, is directly radiated back to the surface and we can neglect that.

The 342 W/m2 of back radiation is OBSERVED, so this ain't a model or a theory, where does it come from?  It comes from ALL of the sources pushing heat into the atmosphere, from the convective and radiative heat transfer from the surface.

That being the case the source of the IR backradiation must be allocated by proportion to the amount transferred from the surface.  Let's do that as is shown in the second and third lines of the table below


The bunnies can refer to the first table above and read out the amount of flux absorbed in the atmosphere from each source.  The next and last line is the proportional flux which warms the atmosphere.  By inspection IR radiation from the surface is much larger than the other three, indeed it is about twice as big as the sum of them.

As far as emission to space, 29% directly from reflection from the atmosphere and surface, 12 % directly from thermal IR emission of the surface and 59% comes from IR emission from the atmosphere.